Built in plotting function to check user-corrected territory class assignment.
check_user_terr.RdFunction to plot the user-corrected territory classes from: beavertools::user_classify()
Usage
check_user_terr(
  terr_poly,
  fill_col = c("#7EAAC7", "#F87223", "#61E265"),
  label = TRUE,
  basemap = FALSE,
  basemap_type = "cartolight",
  axes_units = TRUE,
  scalebar = TRUE,
  scalebar_loc = "tl",
  north_arrow = TRUE,
  north_arrow_loc = "br",
  north_arrow_size = 0.75,
  wgs = TRUE,
  guide = TRUE,
  plot_extent
)Arguments
- terr_poly
- a territory polygon created using - beavertools::estimate_territories()
- fill_col
- character vector of R colours or HEX codes. 
- label
- label activity areas with polygon ID. important when checking the predicted classification 
- basemap
- Boolean, include an OSM basemap. (optional) 
- basemap_type
- Character vector for osm map type. for options see - rosm::osm.types()
- axes_units
- Boolean to include coordinate values on axis. 
- scalebar
- Boolean to include a scalebar. 
- scalebar_loc
- character vector for the scalebar location one of:'tl', 'bl', 'tr', 'br' Meaning "top left" etc. 
- north_arrow
- Boolean to include a north arrow 
- north_arrow_loc
- character vector for the arrow location one of:'tl', 'bl', 'tr', 'br' Meaning "top left" etc. 
- north_arrow_size
- numeric vector for the arrow 
- wgs
- Boolean to transform coordinate reference system (CRS) to WGS84 (EPSG:4326) 
- guide
- Boolean to include a legend 
- plot_extent
- 'bbox', 'sf' or 'sp' object defining the desired plot extent. 
Examples
# Here we filter the filter the built in 2019-2020 ROBT feeding sign data `RivOtter_FeedSigns`
# Then pipe this 'sf' object to forage_density.
ROBT_201920 <- RivOtter_FeedSigns %>%
dplyr::filter(SurveySeason == "2019 - 2020")%>%
  forage_density(., 'FeedCat')
#> No value supplied for "kd_extent" argument: default extent will be used
#> 
#> calculating weighted kde
# Now we load the ROBT `RivOtter_OtherSigns` dataset and filter to the same
# year as the forage density raster.
CS_201920 <- RivOtter_OtherSigns %>%
dplyr::filter(SurveySeason == "2019 - 2020")
# run territory classification
otter_poly <- estimate_territories(ROBT_201920, confirm_signs = CS_201920)
# create the map for checking automated territory classification
otter_poly_uc <- user_classify(otter_poly, territory = c(10, 28))
# generate the user territory check plot.
check_user_terr(otter_poly_uc, basemap=FALSE)
#> Warning: st_point_on_surface may not give correct results for longitude/latitude data
