Skip to contents

Opportunity to add a new column 'user_class' which enables the user to confirm or reject the automated assessment of territory areas.

Usage

user_classify(
  territory_poly,
  territory = NULL,
  possible = NULL,
  activity = NULL
)

Arguments

territory_poly

a territory polygon generated with beavertools::estimate_territories()

territory

numeric vector containing the ID numbers for areas to be reclassified as 'Territory'. e.g. c(10, 28)

possible

numeric vector containing the ID numbers for areas to be reclassified as 'Possible'

activity

numeric vector containing the ID numbers for areas to be reclassified as 'Activity'

Value

territory_poly is returned with the an additional column 'user_class'

Examples

# Here we filter the filter the built in 2019-2020 ROBT feeding sign data `RivOtter_FeedSigns`
# Then pipe this 'sf' object to forage_density.
ROBT_201920 <- RivOtter_FeedSigns %>%
dplyr::filter(SurveySeason == "2019 - 2020")%>%
  forage_density(., 'FeedCat')
#> No value supplied for "kd_extent" argument: default extent will be used
#> 
#> calculating weighted kde

# Now we load the ROBT `RivOtter_OtherSigns` dataset and filter to the same
# year as the forage density raster.

CS_201920 <- RivOtter_OtherSigns %>%
dplyr::filter(SurveySeason == "2019 - 2020")

# run territory classification
otter_poly <- estimate_territories(ROBT_201920, confirm_signs = CS_201920)

# create the map for checking automated territory classification
check_auto_terr(otter_poly, basemap=FALSE, label=TRUE)
#> Warning: st_point_on_surface may not give correct results for longitude/latitude data


user_classify(otter_poly, territory = c(10, 28))
#> Simple feature collection with 19 features and 9 fields
#> Geometry type: POLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 305066.8 ymin: 82922.7 xmax: 323174.2 ymax: 114417.3
#> Projected CRS: OSGB 1936 / British National Grid
#> First 10 features:
#>     quant quantf id Upper_Thresh Confirm_signs terr_status user_class
#> 1    0.04   0.04  1          Yes           Yes   Territory  Territory
#> 1.1  0.04   0.04  2          Yes           Yes   Territory  Territory
#> 1.2  0.04   0.04  3          Yes           Yes   Territory  Territory
#> 1.3  0.04   0.04  4           No            No    Activity   Activity
#> 1.4  0.04   0.04  5           No            No    Activity   Activity
#> 1.5  0.04   0.04  6          Yes            No    Possible   Possible
#> 1.6  0.04   0.04  7           No            No    Activity   Activity
#> 1.7  0.04   0.04  8          Yes           Yes   Territory  Territory
#> 1.8  0.04   0.04  9           No            No    Activity   Activity
#> 1.9  0.04   0.04 10          Yes           Yes   Territory  Territory
#>          mean_fd       sum_fd                       geometry
#> 1   6.446271e+00 1.931303e+04 POLYGON ((306363.5 85553.01...
#> 1.1 3.760834e+00 3.855607e+04 POLYGON ((307984.4 103446.1...
#> 1.2 9.883062e+00 1.021019e+05 POLYGON ((308968.5 87075.83...
#> 1.3 7.160177e-06 6.365397e-03 POLYGON ((308760.1 98358.51...
#> 1.4 1.015215e-05 1.273080e-02 POLYGON ((309188.5 104207.5...
#> 1.5 1.093554e+00 1.285254e+04 POLYGON ((309466.3 93201.71...
#> 1.6 7.120130e-06 6.365397e-03 POLYGON ((309362.1 96904.92...
#> 1.7 3.611413e+00 1.276273e+04 POLYGON ((309721 95485.93, ...
#> 1.8 3.286781e-05 3.819240e-02 POLYGON ((310010.5 96524.21...
#> 1.9 2.393606e+00 1.276271e+04 POLYGON ((311943.9 99016.09...